Implementation of Multimodal LLM Agents and Biomechanical Analysis for Remote Elderly Healthcare in Taiwan: A Case Study

Main Article Content

GUAN-HAO HUANG
Yen-Po Lin
Song-Fan Shih

Abstract

Taiwan’s rapidly aging population and the unequal distribution of healthcare resources in remote areas pose a critical challenge to equitable medical services. This study proposes a multimodal AI system that integrates large language model (LLM) agents with real-time biomechanical gesture recognition, designed for remote elderly healthcare. By combining browser-based joint-angle tracking with cloud-hosted, context-aware conversational agents, the system enables natural language communication and clinical motion analysis without transmitting video data. Evaluated in rehabilitation scenarios in Taiwan, the platform demonstrates low latency, accurate pose classification, and automated clinical scoring using the Brunnstrom and Fugl–Meyer scales. Its multilingual interface supports personalized, secure, and efficient health interactions, aligning with Taiwan’s Long-Term Care Plan 2.0 and AI healthcare initiatives. This solution addresses communication and mobility barriers, enhances healthcare accessibility in rural areas, and contributes to global discourse on ethical, inclusive, and context-aware AI in eldercare.

Article Details

How to Cite
HUANG, G.-H., Lin , Y.-P., & Shih, S.-F. (2025). Implementation of Multimodal LLM Agents and Biomechanical Analysis for Remote Elderly Healthcare in Taiwan: A Case Study. Supply Chain and Sustainability Research (SCSR), 4(2), 83–93. retrieved from https://so08.tci-thaijo.org/index.php/SCSR/article/view/5431
Section
Research articles

References

Abbas, M., Saleh, M., Somme, D., & Le Bouquin Jeannès, R. (2023). Data-driven systems to detect physical weakening from daily routine: A pilot study on elderly over 80 years old. PloS one, 18(1), e0274306. https://doi.org/10.1371/journal.pone.0274306

Agustin, K., & Chou, S.-Y. (2019). Impact of an Ageing Society on Healthcare Expenditure of National Health Insurance in Taiwan. Jurnal Teknik Industri: Jurnal Keilmuan Dan Aplikasi Teknik Industri, 21(2), 49–56. https://doi.org/10.9744/jti.21.2.49-56

Brunnstrom, S. (1970). Movement therapy in hemiplegia: A neurophysiological approach. Harper & Row.

Casiez, G., Roussel, N., & Vogel, D. (2012). 1 € filter: A simple speed-based low-pass filter for noisy input in interactive systems. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2527–2530. https://doi.org/10.1145/2207676.2208639

Char, D. S., Shah, N. H., & Magnus, D. (2020). Implementing machine learning in health care—addressing ethical challenges. The New England Journal of Medicine, 378(11), 981-983. https://doi.org/10.1056/NEJMp1714229

Chiu, K.-H., & Yang, Y. Y. (2009). A case study of remote monitoring of health status of the elderly at home in Taiwan. Proceedings of the International Conference on e-Business (ICEB), 496–506.

Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future Healthcare Journal, 6(2), 94-98. https://doi.org/10.7861/futurehosp.6-2-94

Davico, G., Labanca, L., Gennarelli, I., Benedetti, M. G., & Viceconti, M. (2024). Towards a comprehensive biomechanical assessment of the elderly combining in vivo data and in silico methods. Frontiers in Bioengineering and Biotechnology, 12, 1356417. https://doi.org/10.3389/fbioe.2024.1356417

DelveInsight. (2025, June 4). Global AI in remote patient monitoring market to cross USD 13 billion by 2032 [Press release]. Globenewswire. https://www.globenewswire.com/news-release/2025/06/04/3093902/0/en/Global-AI-in-Remote-Patient-Monitoring-Market-to-Cross-USD-13-Billion-by-2032-DelveInsight.html

Fugl-Meyer, A. R., Jääskö, L., Leyman, I., Olsson, S., & Steglind, S. (1975). The post-stroke hemiplegic patient: A method for evaluation of physical performance. Scandinavian Journal of Rehabilitation Medicine, 7(1), 13–31.

Gottschlich, D., Saadati, N., Saadati, S. A., & Şahin, A. (2024). AI in Elderly Care: Understanding the Implications for Independence and Social Interaction. AI and Tech in Behavioral and Social Sciences, 2(3), 36-42. https://doi.org/10.61838/kman.aitech.2.3.5

Gu, F., Fan, J., Wang, Z., Liu, X., Yang, J., & Zhu, Q. (2023). Automatic range-of-motion measurement via smartphone images for telemedicine examination of the hand. Science Progress, 106(1), 1–12. https://doi.org/10.1177/00368504231152740

Iqbal, S. (2023). Artificial intelligence tools and applications for elderly healthcare – Review. In Proceedings of the 2023 9th International Conference on Computing and Artificial Intelligence (ICCAI '23) (pp. 394–397). Association for Computing Machinery. https://doi.org/10.1145/3594315.3594347

Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1(9), 389-399. https://doi.org/10.1038/s42256-019-0088-2

Kelly, C.J., Karthikesalingam, A., Suleyman, M., Corrado, G.C., & King, D. (2019). Key challenges for delivering clinical impact with artificial intelligence. BMC Medicine, 17.

Klakegg, S., van Berkel, N., Visuri, A., Huttunen, H. L., Hosio, S., Luo, C., Goncalves, J., & Ferreira, D. (2017). Designing a context-aware assistive infrastructure for elderly care. Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 451-456. https://doi.org/10.1145/3123024.3124403

Liu, X., Rivera, S. C., Moher, D., Calvert, M. J., & Denniston, A. K., for the SPIRIT-AI and CONSORT-AI Working Group. (2021). Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: The CONSORT-AI extension. BMJ, 370, m3164. https://doi.org/10.1136/bmj.m3164

Ministry of Health and Welfare (MOHW), Taiwan. (2024, December 23). Long-term Care Plan 2.0. Executive Yuan. https://english.ey.gov.tw/News3/9E5540D592A5FECD/332a78c0-0c8e-4064-bd71-8c22477dae75

National Cheng Kung University (NCKU). (2025, April 15). How AI and robots are caring for the elderly in Taiwan’s ageing society. GovInsider Asia. https://govinsider.asia/intl-en/article/how-ai-and-robots-are-caring-for-the-elderly-in-taiwans-ageing-society-dr-jenny-su-ncku

National Development Council, Taiwan. (2022). Population Projections for Taiwan (2022–2070). Executive Yuan, R.O.C. (Taiwan).

OpenAI. (2023). GPT-4 technical report. https://arxiv.org/abs/2303.08774

Perimal, M., Basah, S. N., Safar, M. J. A., & Yazid, H. (2018). Hand-gesture recognition algorithm based on finger counting. Journal of Telecommunication, Electronic and Computer Engineering, 10(1-13), 19–25.

Rajpurkar, P., Chen, E., Banerjee, O., & Topol, E. J. (2022). AI in health and medicine. Nature Medicine, 28(1), 31-38. https://doi.org/10.1038/s41591-021-01614-0

Serrano, L. P., Maita, K. C., Avila, F. R., Torres-Guzman, R. A., Garcia, J. P., Eldaly, A. S., Haider, C. R., Felton, C. L., Paulson, M. R., Maniaci, M. J., & Forte, A. J. (2023). Benefits and Challenges of Remote Patient Monitoring as Perceived by Health Care Practitioners: A Systematic Review. The Permanente journal, 27(4), 100–111. https://doi.org/10.7812/TPP/23.022

Shah, P., et al. (2023). Unraveling the ethical enigma: Artificial intelligence in healthcare. Journal of Medical Internet Research, 25(8), e10492220. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10492220/

Sun, Q., Xie, J., Ye, N., Gu, Q., & Guo, S. (2024). Enhancing nursing and elderly care with large language models: An AI-driven framework. Proceedings of the 31st International Conference on Computational Linguistics, 10083-10094. https://aclanthology.org/2025.coling-main.673

Taipei Medical University Healthcare (TMU Healthcare). (2024, December 3). Leading and living with AI, TMU Healthcare’s pioneering smart long-term care facility. Office of Global Engagement, TMU. https://oge.tmu.edu.tw/leading-and-living-with-ai-tmu-healthcares-pinoeering-smart-long-term-care-facility/

Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44-56. https://doi.org/10.1038/s41591-018-0300-7

Weiner, E. B., Dankwa-Mullan, I., Nelson, W. A., & Hassanpour, S. (2025). Ethical challenges and evolving strategies in the integration of artificial intelligence into clinical practice. PLOS digital health, 4(4), e0000810. https://doi.org/10.1371/journal.pdig.0000810

Wu, T.-Y., Majeed, A., & Kuo, K. N. (2010). An overview of the healthcare system in Taiwan. London Journal of Primary Care, 3(2), 115–119. https://doi.org/10.1080/17571472.2010.11493315

Xiao, H.-Y., & Wang, M.-Y. (2024). Progress, challenges, and development directions of long-term care in Taiwan. Atlantis Press Proceedings. https://www.atlantis-press.com/article/126008801.pdf

Yang, Y., & Lin, G. T. R. (2024). Analyzing the Shortcomings in Smart Healthcare for Remote Home Care—A Case Study of the Taiwan Market. International Journal of Environmental Research and Public Health, 21(7), 838. https://doi.org/10.3390/ijerph21070838

Yeh, C. F., Cheng, H. T., Wei, A., Chen, H. M., Kuo, P. C., Liu, K. C., Ko, M. C., Chen, R. J., Lee, P. C., Chuang, J. H., Chen, C. M., Chen, Y. C., Lee, W. J., Chien, N., Chen, J. Y., Huang, Y. S., Chang, Y. C., Huang, Y. C., Chou, N. K., Chao, K. H., Tu, Y. C., Chang, Y. C., & Liu, T. L. (2020). A cascaded learning strategy for robust COVID-19 pneumonia chest X-ray screening. arXiv preprint arXiv:2004.12786. https://arxiv.org/abs/2004.12786

Zhang, F., Bazarevsky, V., Vakunov, A., Tkachenka, A., Sung, G., Chang, C.-L., & Grundmann, M. (2020). MediaPipe Hands: On-device real-time hand tracking (arXiv:2006.10214). arXiv. https://arxiv.org/abs/2006.10214