SOLUTION JOURNALISM AND THE DEVELOPMENT OF MEDIA QUALITY ASSESSMENT TOOLS: A CASE STUDY OF HOUSEHOLD ECONOMIC
Main Article Content
Abstract
The COVID-19 pandemic has had a severe economic impact, particularly at the household level in Thailand. Thai PBS, as a public media organization, prioritized "household economy" as its main news agenda in 2021 to address public concerns and propose solutions for affected communities. This research aims to analyze Thai PBS's news reporting strategies on household economic issues and develop a quality media monitoring tool to evaluate organizational performance.
A content analysis was conducted on 3,996 news items across three platforms—television, website, and social media—using the Inform–Explain–Solution framework. Findings revealed that 68.9% of the content focused on solutions, 19.3% on explanation, and 6.5% on information delivery. The solution-oriented reports frequently employed actionable case studies, enabling audiences to better understand problems, visualize problem-solving processes, and adapt in terms of livelihood and income. The results also reflect the principles of explanatory journalism by presenting information from multiple sources and providing in-depth context, thereby fostering rational understanding and enabling the public to respond effectively to crises.
Furthermore, this study developed a Machine Learning (ML) system in collaboration with NECTEC using the “Inform–Explain–Solution” framework to label 6,121 news items for automated classification, achieving an accuracy rate of 79%. This work represents a pioneering integration of qualitative and quantitative content analysis with ML technology to enhance editorial decision-making, create standardized datasets, and provide a systematic approach for evaluating public service news quality. The findings underscore the role of Thai PBS in promoting public understanding and supporting effective social problem-solving in the post-pandemic era.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของคณะวิทยาการจัดการ มหาวิทยาลัยราชภัฏอุดรธานี
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้ ไม่ใช่ความคิดเห็นและความรับผิดชอบของผู้จัดทำ บรรณาธิการ กองบรรณาธิการ และคณะวิทยาการจัดการ มหาวิทยาลัยราชภัฏอุดรธานี ความรับผิดชอบด้านเนื้อหาและการตรวจร่างบทความแต่ละเรื่องเป็นความคิดเห็นของผู้เขียนบทความแต่ละท่าน
References
สำนักงานสถิติแห่งชาติ. (2564). การสำรวจความต้องการของประชาชน พ.ศ. 2564 (ของขวัญปีใหม่ที่ต้องการจากรัฐบาล). กระทรวงดิจิทัลเพื่อเศรษฐกิจและสังคม. https://www.nso.go.th/nsoweb/storage/survey_detail/2023/20230430135211_36579.pdf
Ayo, F. E., Folorunso, O., Ibharalu, F. T., & Osinuga, I. A. (2020). Hate speech detection in Twitter using hybrid embeddings and improved cuckoo search-based neural networks. International Journal of Intelligent Computing and Cybernetics, 13(4), 485–525. https://doi.org/10.1108/IJICC-06-2020-0061
Buckman, S. R., Shapiro, A. H., Sudhof, M., & Wilson, D. J. (2020). News sentiment in the time of COVID-19. FRB SF Weekly Letter, 2020(08), 1–05. https://www.frbsf.org/economic-research/files/el2020-08.pdf
Carretero, A. B., & Bariain, G. J. (2016). Slow Journalism in Spain. Journalism Practice, 10(4), 521–538. https://doi.org/10.1080/17512786.2015.1124729
Clack, R. P. (2020, April 14). Explanatory journalism is entering a golden age in the middle of the coronavirus pandemic. Poynter. https://www.poynter.org/reporting-editing/2020/explanatory-journalism-is-entering-a-golden-age-in-the-middle-of-the-coronavirus-pandemic/
Dan, V., & Rauter, D. (2021). Explanatory reporting in video format: Contrasting perceptions to those of conventional news. Journalism Practice, 1–22. https://doi.org/10.1080/17512786.2021.1966644
Gans, H. J. (2003). Democracy and the news. Oxford University Press.
Gibbs, C. K., & Warhover, T. (2002). Getting the whole story: Reporting and writing the news. Guilford Press.
Hamborg, F., Donnay, K., & Gipp, B. (2019). Automated identification of media bias in news articles: An interdisciplinary literature review. International Journal on Digital Libraries, 20, 391–415. https://doi.org/10.1007/s00799-018-0261-y
Hossein, N., & Miller, D. W. (2018). Predicting motion picture box office performance using temporal tweet patterns. International Journal of Intelligent Computing and Cybernetics, 11(1), 64–80. https://doi.org/10.1108/IJICC-04-2017-0033
Hudak, J. (2016, February 24). Shining light on explanatory journalism’s impact on media, democracy, and society. Brookings. https://www.brookings.edu/blog/fixgov/2016/02/24/shining-light-on-explanatory-journalisms-impact-on-media-democracy-and-society/
McIntyre, K. E., & Gyldensted, C. (2017). Constructive journalism: An introduction and practical guide for applying positive psychology techniques to news production. Journal of Media Innovations, 4(2), 20–34. https://doi.org/10.13152/jmi.v4i2.103
McIntyre, K. E., & Lough, K. (2019). Toward a clearer conceptualization and operationalization of solutions journalism. Journalism, 1–16. https://doi.org/10.1177/1464884919833808
McQuail, D., & Deuze, M. (2020). McQuail’s media & mass communication theory (7th ed.). SAGE Publications.
Murfi, H., Siagian, F. L., & Satria, Y. (2019). Topic features for machine learning-based sentiment analysis in Indonesian tweets. International Journal of Intelligent Computing and Cybernetics, 12(1), 70–81. https://doi.org/10.1108/IJICC-04-2018-0057
Panagiotou, N., Saravanou, A., & Gunopulos, D. (2021). News monitor: A framework for exploring news in real-time. Data, 7(1), 3. https://doi.org/10.3390/data7010003
Roberts, D. (2019, December 7). My advice for aspiring explainer journalists. Vox. https://www.vox.com/science-and-health/2018/12/7/18117404/advice-for-journalists-news-media
Solutions Journalism Network. (2020). Solutions journalism: What is it and why should I care?. The Whole Story. https://thewholestory.solutionsjournalism.org/solutions-journalism-what-is-it-and-why-should-i-care-e5acd0ab5332
Thomson Reuters. (2016). News or noise? Thomson Reuters 2016 annual report. https://archive.annual-report.thomsonreuters.com/2016/is-it-news-or-noise.html
Umer, M., Imtiaz, Z., Ullah, S., Mehmood, A., Choi, G. S., & On, B. W. (2020). Fake news stance detection using deep learning architecture (CNN-LSTM). IEEE Access, 8, 156695–156706. https://doi.org/10.1109/ACCESS.2020.3019735
Varma, A. (2017). When empathy is not enough: The possibilities for solidarity in the San Francisco homeless project. Journalism Practice, 1–17. https://doi.org/10.1080/17512786.2017.1394210
Vehkoo, J. (2010). What is quality journalism and how it can be saved?. Reuters Institute for the Study of Journalism, University of Oxford.
Višňovský, J., & Bielik, P. (2021). Explanatory journalism – a new way how to communicate in digital era. Media Literacy and Academic Research, 4(1). https://cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.desklight-18ff7804-b37e-4e04-8d4d-60bbb25e3d1b