THE EFFECT OF AUDITING TECHNIQUES IN THE DIGITAL AGE AND AUDITING INNOVATION ON AUDIT SUCCESS OF THE CERTIFIED PUBLIC ACCOUNTANT IN THE STOCK EXCHANGE OF THAILAND
Main Article Content
Abstract
The objectives of this study are to examine the impacts of digital audit techniques; remote auditing, continuous auditing, big data analytics, and audit innovations such as artificial intelligence, blockchain and drones, on audit success. Furthermore, this research tests the effect of audit innovations on the relationship between digital audit techniques and audit success. Out of 351 auditors approved by the Office of the Securities and Exchange Commission (SEC), 205 auditors responded to the questionnaires, representing a response rate of 58.41%. Data analysis and statistical methods employed in the study are percentages, means, standard deviations, correlation analysis, and multiple regression analysis.
The findings reveal that audit techniques in the digital era, including remote auditing, blockchain and drone, have a positive impact on auditing success. Artificial intelligence in auditing also has a positive effect on the relationship between remote auditing techniques and audit success. Moreover, the innovation of big data analytics positively affects the relationship between big data analytics and audit success, with statistical significance at the 0.05 level.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของคณะวิทยาการจัดการ มหาวิทยาลัยราชภัฏอุดรธานี
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้ ไม่ใช่ความคิดเห็นและความรับผิดชอบของผู้จัดทำ บรรณาธิการ กองบรรณาธิการ และคณะวิทยาการจัดการ มหาวิทยาลัยราชภัฏอุดรธานี ความรับผิดชอบด้านเนื้อหาและการตรวจร่างบทความแต่ละเรื่องเป็นความคิดเห็นของผู้เขียนบทความแต่ละท่าน
References
Aaker, D. A., Kumar, V., & Day, G. S. (2001). Marketing research (7th ed.). Wiley.
Abdelwahed, N. A. A., Sawan, N., & Abdelkader, B. (2024). Unleashing the beast: The impact of big data and data analytics on the auditing profession—Evidence from a developing country. Future Business Journal, 10(1), Article 420. https://doi.org/10.1186/s43093-024-00420-7
Adelakun, B. O., Onwubuariri, E. R., Adeniran, G. A., & Ntiakoh, A. (2024). Enhancing fraud detection in accounting through AI: Techniques and case studies. Finance & Accounting Research Journal, 6(6), 978–999. https://doi.org/10.51594/farj.v6i6.1232
Alles, M. G. (2015). Drivers of the use and facilitators and obstacles of the evolution of big data by the audit profession. Accounting Horizons, 29(2), 439–449. https://doi.org/10.2308/acch-51067
Almadadha, R. (2024). Blockchain technology in financial accounting: Enhancing transparency, security, and ESG reporting. Blockchains, 2(3), 312–333. https://doi.org/10.3390/blockchains2030015
American Institute of Certified Public Accountants. (2015). Guide to audit data analytics. American Institute of Certified Public Accountants.
American Institute of Certified Public Accountants. (2019). The use of technology in audit: Enhancing audit quality through innovation. https://www.aicpa.org/
Appelbaum, D., & Nehmer, R. (2017, July 3). The coming disruption of drones, robots, and bots: How will it affect CPAs and accounting practice. The CPA Journal. https://www.cpajournal.com/2017/07/03/coming-disruption-drones-robots-bots/
Arens, A. A., Elder, R. J., Beasley, M. S., & Hogan, C. E. (2016). Auditing and assurance services: An integrated approach (16th ed.). Pearson.
Armstrong, J. S., & Overton, T. S. (1977). Estimating nonresponse bias in mail surveys. Journal of Marketing Research, 14(3), 396–402. https://doi.org/10.1177/002224377701400314
Astuti, D., & Rohmah, U. (2023). The effect of application of audit digitalization on auditor performance with professional ethics as a moderation variable. Marginal Journal of Management Accounting General Finance and International Economic Issues, 2(2), 598–606. https://doi.org/10.55047/marginal.v2i2.655
Barr‐Pulliam, D., Brown‐Liburd, H. L., & Munoko, I. (2022). The effects of person‐specific, task, and environmental factors on digital transformation and innovation in auditing: A review of the literature. Journal of International Financial Management and Accounting, 33(1), 143–173. https://doi.org/10.1111/jifm.12148
Baruch, Y., & Holtom, B. C. (2008). Survey response rate levels and trends in organizational research. Human Relations, 61(8), 1139–1160. https://doi.org/10.1177/0018726708094863
Black, K. (2005). Business statistics: For contemporary decision making (4th ed.). Wiley.
Brown-Liburd, H., Issa, H., & Lombardi, D. (2015). Behavioral implications of big data's impact on audit judgment and decision making and future research directions. Accounting Horizons, 29(2), 451–468. https://doi.org/10.2308/acch-51023
Christ, M. H., Emett, S. A., Summers, S. L., & Wood, D. A. (2021). Prepare for takeoff: Improving asset measurement and audit quality with drone-enabled inventory audit procedures. Review of Accounting Studies, 26(4), 1323–1343. https://doi.org/10.1007/s11142-020-09574-5
Curtis, M. B. (2009). Bottom-up innovation – A study of intrapreneurship in organizations [Paper presentation]. 19th World Continuous Auditing & Reporting Symposium, Rutgers Business School, Newark, NJ, United States.
Curtis, M. B., Chui, L., & Pavur, R. J. (2020). Intention to champion continuous monitoring: A study of intrapreneurial innovation in organizations. Journal of Emerging Technologies in Accounting, 17(2), 119–140. https://doi.org/10.2308/JETA-2020-014
Dai, J., & Vasarhelyi, M. A. (2017). Toward blockchain-based accounting and assurance. Journal of Information Systems, 31(3), 5–21. https://doi.org/10.2308/isys-51804
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008
Dyball, M. C., & Seethamraju, R. (2022). Client use of blockchain technology: Exploring its (potential) impact on financial statement audits of Australian accounting firms. Accounting, Auditing & Accountability Journal, 35(5), 1023–1044. https://doi.org/10.1108/AAAJ-07-2020-4681
Faccia, A., & Mosteanu, N. R. (2019). Accounting and blockchain technology: From double-entry to triple-entry. The Business & Management Review, 10(2), 108–116.
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis (8th ed.). Cengage.
Hamdam, A., Jusoh, R., Yahya, Y., Abdul Jalil, A., & Zainal Abidin, N. H. (2021). Auditor judgment and decision-making in big data environment: A proposed research framework. Accounting Research Journal, 34(1), 1–24. https://doi.org/10.1108/arj-04-2020-0078
Issa, H., Sun, T., & Vasarhelyi, M. A. (2016). Research ideas for artificial intelligence in auditing: The formalization of audit and workforce supplementation. Journal of Emerging Technologies in Accounting, 13(2), 1–20. https://doi.org/10.2308/jeta-10511
Karajovic, M., Kim, H. M., & Laskowski, M. (2019). Thinking outside the block: Projected phases of blockchain integration in the accounting industry. Australian Accounting Review, 29(2), 319–330. https://doi.org/10.2139/ssrn.2984126
Kend, M., & Nguyen, L. A. (2020). Big data analytics and other emerging technologies: The impact on the Australian audit and assurance profession. Australian Accounting Review, 30(2), 211–222. https://doi.org/10.1111/auar.12305
Kline, R. B. (2011). Principles and practice of structural equation modeling (3rd ed.). Guilford Press.
Kohout, F. J. (1974). Statistics for social scientists: A coordinated learning system. John Wiley.
Kokina, J., & Davenport, T. H. (2017). The emergence of artificial intelligence: How automation is changing auditing. Journal of Emerging Technologies in Accounting, 14(1), 115–122. https://doi.org/10.2308/jeta-51730
Kokina, J., Blanchette, S., Davenport, T. H., & Pachamanova, D. (2025). Challenges and opportunities for artificial intelligence in auditing: Evidence from the field. International Journal of Accounting Information Systems, 56, Article 100734. https://doi.org/10.1016/j.accinf.2025.100734
Law, K. K. F., & Mills, L. F. (2024). How does artificial intelligence shape audit firms. Management Science, 70(5), 2911–2928. https://doi.org/10.1287/mnsc.2022.04040
Li, Y., Goel, S., & Williams, K. (2023). Impact of remote audit on audit quality, audit efficiency, and auditors' job satisfaction. International Journal of Auditing, 27(2-3), 130–149. https://doi.org/10.1111/ijau.12306
Li, Y., Goel, S., & Williams, K. J. (2024). Remote audit quality, audit efficiency, and auditors' job satisfaction: Implications for audit firms and external auditors. Current Issues in Auditing, 18(2), P20–P28. https://doi.org/10.2308/CIIA-2023-033
Liu, M., Wu, K., & Xu, J. J. (2019). How will blockchain technology impact auditing and accounting: Permissionless versus permissioned blockchain. Current Issues in Auditing, 13(2), A19–A29. https://doi.org/10.2308/ciia-52540
Munoko, I., Brown-Liburd, H. L., & Vasarhelyi, M. (2020). The ethical implications of using artificial intelligence in auditing. Journal of Business Ethics, 167(2), 209–234. https://doi.org/10.1007/s10551-019-04407-1
Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory (3rd ed.). McGraw-Hill.
Santoso, B. (2020). The impact of information technology on the audit process: Auditors' perspectives. Golden Ratio of Auditing Research, 1(1), 1–12. https://doi.org/10.52970/grar.v1i1.362
Schiff, D. S., Kelley, S., & Camacho Ibáñez, J. (2024). The emergence of artificial intelligence ethics auditing. Big Data & Society, 11(1), 1–18. https://doi.org/10.1177/20539517241299732
Schmitz, J., & Leoni, G. (2019). Accounting and auditing at the time of blockchain technology: A research agenda. Australian Accounting Review, 29(2), 331–342. https://doi.org/10.1111/auar.12286
Securities and Exchange Commission, Thailand. (2023). List of auditors approved by the office of SEC. https://market.sec.or.th/public/orap/AUDITOR01.aspx?lang=th
Serag, A. A. E., & Daoud, M. M. (2021). Remote auditing: An alternative approach to face the internal audit challenges during the COVID-19 pandemic. Assiut University Journal of Faculty of Commerce, 25(2), 228–259. https://doi.org/10.21608/atasu.2021.181073
Srisaard, B. (2002). Basic research (7th ed.). Suviriyasarn.
Thottoli, M. M., Ahmed, E. R., & Thomas, K. V. (2022). Emerging technology and auditing practice: Analysis for future directions. In S. K. Pani, B. S. P. Rao, & S. G. S. Karthikeyan (Eds.), Applications of artificial intelligence in business, education and healthcare (pp. 99–119). Emerald Publishing Limited. https://doi.org/10.1108/978-1-80262-132-520221006
Turner, R. C., & Carlson, L. (2003). Indexes of item-objective congruence for multidimensional items. International Journal of Testing, 3(2), 163–171. https://doi.org/10.1207/S15327574IJT0302_5
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186–204. https://doi.org/10.1287/mnsc.46.2.186.11926
Xu, L., Dellaportas, S., & Li, Y. (2025). The challenges of remote auditing: An exploratory analysis of auditors in China. Journal of Accounting Literature. Advance online publication. https://doi.org/10.1108/JAL-02-2024-0027
Zhang, J., Yang, X., & Appelbaum, D. (2015). Toward effective big data analysis in continuous auditing. Accounting Horizons, 29(2), 469–476. https://doi.org/10.2308/acch-51070