CAUSAL MODEL OF FACTORS INFLUENCING THE INTENTION TO USE DIGITAL TECHNOLOGY FOR LEARNING IN DAILY LIFE OF GENERATION Z
Main Article Content
Abstract
The objectives of this research were: 1) to examine the influence of information literacy, effort expectancy, and performance expectancy on the intention to use digital technology for everyday learning among Generation Z, and 2) to investigate the causal relationships between casual factors and the intention to use digital technology for everyday learning in conjunction with perceptual data. The data were collected through a questionnaire administered to a sample of 586; aged between 16 and 24 in UdonThani Province, employing a multi-stage random sampling technique. The collected data were analyzed using confirmatory factor analysis and structural equation model. The research findings revealed that the causal model of factors influencing the intention to use digital technology for daily learning among Generation Z aligned well with the perceptual data, as indicated by the following values: (/df = 2.41, GFI = 0.95, AGFI = 0.93, CFI = 0.99, SRMR = 0.047, RMSEA = 0.049). The relationships can be summarized as follows: 1) The effort expectancy directly influenced the intention, driven by information literacy. 2) The performance expectancy directly influenced the intention, also driven by information literacy. 3) The intention to use digital technology was directly and positively influenced by both the expectation from effort exertion and the expectation of performance, with additional indirect influences from information literacy. Furthermore, there were indirect influences from information literacy on the intention. The overall model accounted for 70% of the variance in the intention to use digital technology for daily learning (
= 0.70).
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของคณะวิทยาการจัดการ มหาวิทยาลัยราชภัฏอุดรธานี
ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้ ไม่ใช่ความคิดเห็นและความรับผิดชอบของผู้จัดทำ บรรณาธิการ กองบรรณาธิการ และคณะวิทยาการจัดการ มหาวิทยาลัยราชภัฏอุดรธานี ความรับผิดชอบด้านเนื้อหาและการตรวจร่างบทความแต่ละเรื่องเป็นความคิดเห็นของผู้เขียนบทความแต่ละท่าน
References
กระทรวงดิจิทัลเพื่อเศรษฐกิจและสังคม. (2565). ผลสำรวจพฤติกรรมการใช้อินเทอร์เน็ตของคนไทยปี 2565 Thailand Internet User Behavior 2022. สืบค้นเมื่อ 2 พฤศจิกายน 2565, จาก https://www.etda.or.th/th/Our-Service/statistics-and-information.aspx.
ธาดาธิเบศร์ ภูทอง และคณะ. (2562). ปัจจัยการยอมรับและการใช้งานแพลตฟอร์มเทคโนโลยีการทำงานร่วมกันของ กลุ่มบุคคลเจเนอเรชันซี. วารสารมนุษยศาสตร์สังคมศาสตร์และศิลปะศาสตร์ มหาวิทยาลัยศิลปากร, 12(6), 360-387.
ประสพชัย พสุนนท์. (2558). ความเที่ยงตรงของแบบสอบถามสำหรับงานวิจัยทางสังคมศาสตร์. วารสารสังคมศาสตร์ มหาวิทยาลัยศรีนครินทรวิโรฒ, 18(18), 375-396.
วัลลภา เฉลิมวงศาเวช (2560). การวิเคราะห์องค์ประกอบเชิงยืนยันของการรู้สารสนเทศของนักศึกษาในมหาวิทยาลัยเอกชน. วารสาร BU Academic Review, 16(2), 59-70.
ศุภกฤต ปิติพัฒน์. (2565). แรงจูงใจที่ส่งผลต่อความตั้งใจซื้อสินค้าเสมือนในเกมออนไลน์ของผู้บริโภคเจเนอเรชันซี. วารสารเศรษฐศาสตร์และกลยุทธ์การจัดการ, 9(1), 180-197.
Aavakare, M., & Nikou, S. (2020). University Staffs' Everyday Engagement with Digital Technology - Exploring the Role of Information Literacy and Digital Literacy, ITS Online Event, International Telecommunications Society (ITS), Calgary, 1-14.
Ahmad, F., Widén, G., & Huvila, I. (2020). The impact of workplace information literacy on organizational innovation: An empirical study. International Journal of Information Management, 51, 102041.
Ali, R., & Gupta, S. (2019). Investigating information literacy in business majors. Almaiah, M. A., Alfaisal, R., Salloum, S. A., Al-Otaibi, S., Al Sawafi, O. S., Al-Maroof, R. S., Lutfi, A., Alrawad, M., Mulhem, A. A., & Awad, A. B. (2022). Determinants influencing the continuous intention to use digital technologies in Higher Education. Electronics, 11(18), 2827.
Association of College & Research Libraries (ACRL). (2000). Information literacy competency standards for higher education. Retrieved November 11, 2022, from http://www.ala.org/acrl/standards/informationliteracycompetency.
Bent, M., & Stubbings, R. (2011). The SCONUL seven pillars of information literacy: Core model. Retrieved November 11, 2022, from https://www.sconul.ac.uk/sites/default/files/documents/coremodel.pdf.
Bentler, P. M., & Chou, C. P. (1987). Practical Issues in Structural Modeling. Sociological Methods & Research, 16(1), 78–117.
Chaouali, W., Yahia, I. B., & Souiden, N. (2016). The interplay of counter-conformity motivation, social influence, and trust in customers’ intention to adopt Internet banking services: The case of an emerging country. Journal of Retailing and Consumer Services, 28, 209–218.
Cheok, M. L., & Wong, S. L. (2015). Predictors of e-learning satisfaction in teaching and learning for school teachers: A literature review. International Journal of Instruction, 8(1), 75–90.
Cortina, J. M. (1993). What is Coefficient Alpha: An Examination of Theory and Applications? Journal of Applied Psychology, 78(1), 98-104.
Diamantopoulos, A., & Siguaw, J. A., (2000). Introduction to LISREL: A guide for the uninitiated. London: SAGE Publications.
Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39–50.
Foroughi, B., Nhan, P. V., Iranmanesh, M., Ghobakhloo, M., Nilashi, M., & Yadegaridehkordi, E. (2023). Determinants of intention to use autonomous vehicles: Findings from PLS-SEM and ANFIS. Journal of Retailing and Consumer Services, 70, 103158.
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate Data Analysis. (7th Ed.). Harlow, United Kingdom: Pearson Education.
Jang, M., Aavakare, M., Nikou, S., & Kim, S. (2021). The impact of literacy on intention to use digital technology for learning: A comparative study of Korea and Finland. Telecommunications Policy, 45(7), 102154.
Joosten, T., & Cusatis, R. (2020). Online learning readiness. American Journal of Distance Education, 34(3), 180–193.
Kline, R. B. (2011). Principles and Practice of Structural Equation Modeling. (3rd Ed.). New York: Guilford.
Koednet, A., Samutpaochinda, P., & Pinchinda, P. (2021). Online Classroom Management with The Smiles Model to Enhance A New Normal Learning In The Education Transformation Through Digital Technology. Panyapiwat Journal, 13(1), 294–307.
Magano, J., Silva, C., Figueiredo, C., Vitória, A., Nogueira, T., & Pimenta Dinis, M. A. (2020). Generation Z: Fitting project management soft skills competencies—A mixed-method approach. Education Sciences, 10(7), 187.
Martzoukou, K. (2021). Academic libraries in COVID-19: A renewed mission for digital literacy. Library Management, 42(4/5), 266–276.
Mohammadyari, S., & Singh, H. (2015). Understanding the effect of e-learning on individual performance: The role of digital literacy. Computers & Education, 82, 11–25.
Munoz-Leiva, F., Climent-Climent, S., & Liébana-Cabanillas, F. (2017). Determinants of intention to use the mobile banking apps: An extension of the classic TAM model. Spanish Journal of Marketing-ESIC, 21(1), 25–38.
Nikou, S., & Aavakare, M. (2021). An assessment of the interplay between literacy and digital technology in higher education. Education and Information Technologies, 26(4), 3893–3915.
Okumus, B., Ali, F., Bilgihan, A., & Ozturk, A. B. (2018). Psychological factors influencing customers’ acceptance of smartphone diet apps when ordering food at restaurants. International Journal of Hospitality Management, 72, 67–77.
Sair, S. A., & Danish, R. Q. (2018). Effect of performance expectancy and effort expectancy on the mobile commerce adoption intention through personal innovativeness among Pakistani consumers. Pakistan Journal of Commerce and social sciences (PJCSS), 12(2), 501-520.
Sewandono, R. E., Thoyib, A., Hadiwidjojo, D., & Rofiq, A. (2022). Performance expectancy of E-learning on higher institutions of education under uncertain conditions: Indonesia context. Education and Information Technologies,1–28.
Schumacker, R. E., & Lomax, R. G. (2010). A Beginner’s Guide to Structural Equation Modeling. (3rd Ed.). New Jersey: Lawrence Erlbaum.
Utomo, P., Kurniasari, F., & Purnamaningsih, P. (2021). The effects of performance expectancy, effort expectancy, facilitating condition, and habit on behavior intention in using mobile healthcare application. International Journal of Community Service & Engagement, 2(4), 183–197.
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 425–478.
Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 157–178.
Wong, C.-H., Tan, G. W.-H., Tan, B.-I., & Ooi, K.-B. (2015). Mobile advertising: The changing landscape of the advertising industry. Telematics and Informatics, 32(4), 720–734.